Christine Metz, PhD

Director, Faculty Affairs, The Feinstein Institute for Medical Research

Professor, The Center for Biomedical Science, The Feinstein Institute for Medical Research

Professor and Associate Dean, Elmezzi Graduate School of Molecular Medicine

Professor, Molecular Medicine and Obstetrics & Gynecology,
Donald and Barbara Zucker School of Medicine at Hofstra/Northwell

Phone: (516) 562-3403

About the Investigator

Christine N. Metz is currently a professor at the Feinstein Institute and professor at the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell. In addition, she is the Director of Research for the Department of OB-GYN at NSUH and LIJMC.

Dr. Metz graduated from Cornell University with BS and MS degrees and she completed her PhD in Immunology/Pathology at New York University. She began her scientific career studying the role of macrophage migration inhibitory factor (or MIF) in numerous inflammatory conditions. In 2001, Dr. Metz established her laboratory at the Northwell Health Research Institute (re-named The Feinstein Institute for Medical Research in 2008).

Research Focus

Dr. Metz’s research focuses on inflammation, a complex biological response to infection and injury, in both pregnant and non-pregnant populations. Under healthy conditions, inflammation protects the body and promotes healing. However, when inflammation is excessive or prolonged (e.g. severe infections, arthritis, and ischemic injury caused by decreased blood flow), it damages the body. Her work identifying ways to reduce and prevent dysfunctional inflammation has been funded by the American Heart Association, the National Institutes of Health and the NY State Dept of Public Health. Dr. Metz has published over 110 peer-reviewed research papers and book chapters, and has been an inventor or co-inventor on five patents.

The Laboratory of Medicinal Biochemistry focuses on the regulation of inflammation (defined as the body’s response to infection or tissue injury). Some of the research investigates inflammation during pregnancy (maternal and fetal inflammatory responses) and the other research is unrelated to pregnancy. The inflammatory response is absolutely critical for the body to protect itself following infection or tissue injury, but when inflammation is excessive or sustained it can lead to serious tissue and/or organ damage. Much of the team’s work centers on endothelial cells which line the body’s blood vessels to create ‘slippery tubes’ that facilitate the rapid transport of blood and immune cells throughout the body, particularly to sites of infection and inflammation. Uncontrolled endothelial cell activation, endothelial cell permeability, and immune cell infiltration are characteristic features of many diseases/conditions associated with dysregulated inflammation (e.g. severe infections, arthritis, and ischemic injury caused by decreased blood flow). Therefore, the endothelium is a critical target for anti-inflammation strategies (Tracey and Metz, The Comprehensive Treatise on the Endothelium, 2007).

Regulation of Inflammation Using Nicotinic Acetylcholine Receptor Agonists

Sepsis, a leading complication of surgery and trauma, is a condition characterized by an uncontrolled systemic inflammatory response (with excessive inflammatory mediator production and endothelial cell activation) associated with infection. Despite numerous advances for the treatment of sepsis, the mortality rate for septic patients is between 20-50%. Using experimental models of inflammation, the lab discovered that cholinergic stimulation (using nicotinic acetylcholine receptor (nAChR) agonists or drugs, e.g. nicotine and GTS-21) suppresses excessive endothelial cell activation and inflammatory mediator production in vitro and in vivo and reduce immune cell trafficking during acute inflammation (Saeed et al, JEM 2005). Further studies showed that treatment with nAChR agonists protect against acute kidney injury associated with sepsis/endotoxemia (Chatterjee et al, PLoS ONE 2011). Septic patients who develop acute kidney injury are at increased risk of death and unfortunately, there are no ways to prevent sepsis-associated kidney injury and no effective treatments for kidney injury during sepsis. These studies are important because they support developing a novel treatment for sepsis patients. Similarly, nAChR agonists protect the kidneys from damage following ischemia reperfusion injury (Yeboah et al, Kidney Int’l 2008; Yeboah et al, Am J Physiol Renal Physiol 2008). Kidney ischemia reperfusion injury is a leading cause of acute renal failure. Acute renal failure is common in patients after trauma, hemorrhagic shock, cardiopulmonary bypass surgery, and sepsis. Like septic-acute kidney injury, there are no therapeutic agents for preventing or treating acute renal damage following ischemia reperfusion injury. The advantage of nAChR agonists is that they target multiple targets and pathways simultaneously.

Precisely how the nAChR agonists reduce excessive inflammation and guard against tissue/organ injury is not completely understood. Using various model systems, including human endothelial cell cultures and experimental models, they have identified several pathways targeted by nAChR agonists to control endothelial cell activation, cytokine production, and immune cell trafficking, including the NFkB (Saeed et al, JEM 2005) and JAK2/STAT3 pathways (Chatterjee et al, Am J Physiol Cell Phyiol 2009). In collaboration with an investigator at the Feinstein Institute, they discovered that the control of NFkB activation by nAChR agonists is mediated, in part, through the regulation of the ubiquitin-proteasome system (Chatterjee et al, PLoS ONE 2011). The ubiquitin-proteasome system is the major non-lysosomal mechanism responsible for degrading regulatory cellular proteins such as IkBa, the inhibitory subunit of NFkB, as well as misfolded, damaged, and/or unnecessary proteins. Based on their ability to regulate NFkB-mediated inflammation, proteasome inhibitors have emerged as potential treatments for numerous inflammatory conditions. In ongoing studies, they are examining how nAChR agonists regulate proteasome activity and how they could be further developed as potential therapies for inhibiting excessive or sustained inflammation.

Maternal Fetal Medicine Research Program: Investigating the maternal and fetal/neonatal consequences of inflammation during pregnancy.

The Metz laboratory collaborates closely with clinicians and fellows from the Division of Maternal Fetal Medicine (MFM) in the Department of Obstetrics and Gynecology of the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell. In collaboration with Dr. Burton Rochelson, MD, we discovered that magnesium sulfate, a tocolytic agent used to delay pre-term labor, suppressed the activation of human umbilical vein endothelial cells through NFkB signaling (Rochelson et al., J Repro Immunol 2007).  These observations support recent studies revealing that maternal administration of magnesium sulfate during preterm labor reduces the risk of cerebral palsy in the children. Cerebral palsy is characterized by brain damage which affects motor and cognitive functions and there is evidence that intrauterine infections, fetal inflammatory responses, and perinatal brain lesions increase the risk of cerebral palsy. Consistent with the fetal neuroprotective effect of magnesium sulfate in humans, using experimental model systems we recently found that maternal magnesium sulfate administration reduced both maternal and fetal inflammation (including the fetal brain and placenta) (Tam Tam et al, AJOG 2011; Dowling et al, Placenta 2012). Mechanistic studies support our previous work demonstrating the regulation of NFkB activation by magnesium sulfate (Tam Tam et al, AJOG 2011; Dowling et al, Placenta 2012). Using experimental models of maternal infection and intrauterine growth restriction, we continue to investigate the regulation of maternal and fetal inflammation and how inflammation during pregnancy correlates with various maternal and fetal/neonatal outcomes.

More recent studies conducted by our lab focus on exposures and responses during pregnancy that may affect not only maternal, fetal, and neonatal outcomes, but also may result in long-lasting effects on the offspring’s growth, metabolism, and disease susceptibility into adulthood. This exciting area of research investigating how a suboptimal maternal-fetal environment negatively impacts the offspring into adulthood is known as fetal programming.  Our preliminary data provide clear evidence supporting the impact of early interventions (during pregnancy) to improve the long-term health of the offspring.

Dr. Metz’s lab-based studies centered on better understanding conditions that negatively impact the health of pregnant mothers and their babies (e.g. preterm labor, preeclampsia, maternal infections, intrauterine growth restriction, obesity, and gestational diabetes) are complemented by resources provided through the Generations Project. The Generations Project is one of the largest longitudinal studies of pregnant women and their offspring in a single institution (PI: PK Gregersen, MD; Co-Investigator: C Metz).  It is a collaboration between the Steven and Alexandra Cohen Children’s Medical Center of New York, Long Island Jewish Medical Center, North Shore University Hospital, and the Feinstein Institute for Medical Research. Through this program, we expect to enroll at least 10,000 pregnant women and follow the mothers/children for 18 years. The purpose of the Generations Project is to establish a resource of clinical, genetics, proteomics/gene expression and microbiome data and biological materials to support research projects investigating environmental, genetic and epigenetic factors associated with a range of complex conditions/diseases including, maternal-fetal health, as well as autism, asthma, childhood obesity, precocious puberty, diabetes, and cancer.

Lab Members

Prodyot Chatterjee, PhD
Research Scientist
Education: PhD 1996 Jadavpur University India
Research: Cholinergic regulation of endothelial cell activation and leukocyte trafficking: signaling mechanisms and drug screening studies.

Xiangying Xue, MD
Research Associate
Education: MD 1983 China Medical University China
Research: Identification of mechanisms that underlie dysfunctional inflammatory responses (including vascular inflammation) and how to protect vital organs from inflammatory-mediated damage.

Madhu Gupta, MBBS
Elmezzi Scholar
Education: MBBS 1997 and MS 2002 Gajra Raja Medical College India
Research: In utero exposure to magnesium deficiency: Maternal and fetal consequences

Malvika H. Solanki, MBBS
Elmezzi Scholar
Education: MBBS 2007 Topiwala National Medical College India and MPH 2008 Johns Hopkins Bloomberg School of Public Health
Research: The regulation of acute kidney injury by magnesium

Amanda Roman, MD
MFM Fellow
Education: MD 1991 Universidad Nacional de Colombia
Research: The effect of maternal magnesium supplementation on fetal growth and inflammation in an experimental model of intrauterine growth restriction

Stewart Boulis, MBChB
MFM Fellow
Education: MBChB 1998 University of Cairo, Egypt
Research: The effect of maternal dietary fish oil consumption on maternal and fetal inflammation using an experimental model of maternal infection

Yaakov Rosner


Cornell University, NY
Degree: BS
Field of Study: Chemistry

Cornell University, NY
Degree: MS
Field of Study: Medicine

New York University, NY
Degree: MS
Field of Study: Intern/ Resident

New York University, NY
Degree: PhD
Field of Study: Fellow, Hematology/ Medical Oncology

New York University, NY
Degree: Post-doc
Field of Study: Cell Biology


1998-2001 Assistant Professor, The Picower Institute for Medical Research
1998-2001 Faculty, Picower Graduate School of Molecular Medicine
2002-2010 Associate Investigator, The Feinstein Institute for Medical Research
2006-2007 Adjunct Faculty, Long Island University-CW Post (to mentor MS student)
2010-Present Investigator, the Feinstein Institute for Medical Research
2002-2010 Associate Professor, Northwell Health Graduate School of Molecular Medicine (renamed in 2008: Elmezzi Graduate School of Molecular Medicine)
2004-Present Research Director, Clinical OB/Gyn Research (Fellowship Program)
2010-Present Professor, The Elmezzi Graduate School of Molecular Medicine
2010-Present Professor, Hofstra Northwell School of Medicine

Awards & Honors

2000-Present Member, American Association of Immunologists
2002-Present Co-Director, Tissue Donation Program, The Feinstein Institute for Medical Research
2004-Present Director of Research, Department of OB-GYN, Northwell Health
2006-Present Member, Institutional Review Board (IRB)
2009-Present Grant Reviewer, European Research Council
2010-Present Member, Henry J Kunkel Society
2011-Present Grant Reviewer, US-Israel Binational Science Foundation
2011-Present President, AWSM (Advancing Women in Science and Medicine)
2011 Nominated for “Teamwork’ Northwell Health President’s Award
2012 The Lorinda de Roulet Award for Excellence in Research from Katz Women’s Hospital
2012 The Eileen Ludwig Greenland Innovation Award

  1. Yeboah M, Xue X, Duan B, Ochani M, Tracey KJ, Susin M, Metz CN (2008) “Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats.” Kidney International 74(1):62-9.
  2. Yeboah MM, Xue X, Javdan M, Susin M, Metz CN (2008) “Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury.” Am J Physiol Renal Physiol. 295(3):F654-6.
  3. Reichert V, Xiangying X, Bartscherer D, Jacobsen D, Fardellone C, Folan P, Kohn N, Talwar A, Metz, CN (2009) “A pilot study to examine the effects of smoking cessation on serum markers of inflammation in women at risk for cardiovascular disease.” Chest 136(1):212-9.
  4. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN (2009) “Cholinergic signals to the spleen down-regulated leukocyte trafficking via CD11b.” J Immunol. 183(1):552-9.
  5. Chatterjee, PK, Y Al-Abed, B Sherry, Metz CN (2009) “Cholinergic agonists regulate JAK2/STAT3 signaling to suppress endothelial cell activation.” Am J Physiol. Cell Physiol. 297(5):C1294-306.
  6. Schwartz N, Xue X, Elovitz MA, Dowling O, Metz CN (2009) “Progesterone suppresses the fetal inflammatory response ex vivo.” Am J Obstet Gynecol 201:1-9.
  7. Tam Tam H, Dowling O, Xue X, Lewis D, Rochelson B, Metz CN (2011) “Magnesium sulfate ameliorates maternal and fetal inflammation in a rat model of maternal infection.” Am J Obstet Gynecol. 204(4):364.e1-8.
  8. Al-Abed Y, Metz CN, Cheng KF, Aljabari B, VanPatten S, Blau S, Lee H, Ochani M, Pavlov VA, Coleman T, Meurice N, Tracey KJ, Miller EJ. (2011) “Thyroxine is a potential endogenous antagonist of macrophage migration inhibitory factor (MIF) activity.” Proc Natl Acad Sci USA.17;108(20):8224-7.
  9. Chatterjee PK, Yeboah MM, Dowling O, Xue X, Powell SR, Al-Abed Y, Metz CN (2012) “Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury (AKI) by suppressing inflammation and proteasome activity.” PLoS ONE 7(5):e35361-7.
  10. Dowling O, Chatterjee PK, Gupta M, Tam Tam H, Xue X, Lewis D, Rochelson R, Metz CN (2012) “Magnesium sulfate reduces bacterial LPS-induced inflammation at the maternal-fetal interface.” Placenta 33(5):392-8.

View more at PubMed